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Summary 

The distribution of drugs is of great interest in pharmacological, biological and analytical chemistry. and is strongly dependent 

on their acid-base characteristics. In this way, the evaluation of acidity constants from liquid-liquid distribution measurements 

constitutes an interesting topic. In this paper. we formulate the basic algebra concerning the distribution ratio against pH 

dependences for dibasic acids and diacid bases. A linear hilogarithmic hyperbolic cosine method for evaluating overlapping pK<, 

values has been devised, which unlike the usual least squares procedure allows checking of the correctness of the assumed 

equilibria. 

Introduction 

Distribution of drugs between organic solvents. 
e.g., octanol, and aqueous media forms the basis 
of a number of challenging problems in pharma- 
cological and biological chemistry (Austel and 
Kutler, 1983). Many of these are based on an 
interest in bioavailability and transport of drugs 
and in models used to evaluate structure-activity 
relationships (Austel and Kutler, 1983; Joer- 
gensen, 1984; Rigsby and Long, 1987). An under- 
standing of the partition properties of a drug is 
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also important in selecting the appropriate addi- 
tives such as emulsifiers and oils in preparing 
formulations (Anderson et al., 1981). On the other 
hand, the importance of distribution methods in 
analytical chemistry is well-known (Sucha and 
Kotrly, 1972). Recognition of these facts had led 
to the development of methods for calculating 
acidity constants from liquid-liquid distribution 
measurements. It will be noted that a principal 
concern in the context of drug distribution is 
whether a compound is a base, an acid, a neutral 
molecule or an ion, as this affects very greatly the 
solubility, ionization and other chemical proper- 
ties of the drug (Curry, 1980). 

Some of the methods applied for evaluating 
acidity constants from distribution measurements 
are sophisticated computer programs based on 



the use (Shaper. 1979: Kubota et al.. 1986) ot 
non-linear regression analysis. Nevertheless. oth- 
crs rely on the use of chemical intuition and valid 
simplifying assumptions (Ezumi and Kubota, 
l980: Dagorn et al.. 1985) so that appropriate 
values may be easily calculated. Two principal 
approaches to the problem of evaluating acidity 
constants of dibasic acids, HZ R, and diacid bases, 
R. from liquid-liquid distribution mcasurcments 
have been considered in this paper. The first 
involves the usual least-squares proccdurc appli- 
cable when the distribution constant (partition 
coefficient) is known. In order to determine the 

PK,~ values of diprotolytes WC also have formu- 
lated a method of analysis of the liquid-liquid 
distribution data which permits the evaluation of 
unknown parameters with perhaps more simplic- 
ity than by other methods, allowing one in addi- 
tion to check the correctness of the assumed 

equilibria. 
It should be noted that if either H,R or R is 

the uncharged species which partitions. the plot 

of distribution ratio vs pH dots not pass through 
a maximum, and so, values of overlapping acidity 
constants cannot be obtained by methods de- 
scribed previously (Asuero. 1988b. c. 1989b). In 
this paper, the distribution ratio vs pH depen- 
denccs for diprotolytes is transformed into a hy- 
perbolic cosine relationship to which a trial and 
error linear bilogarithmic method may be ap- 
plied. The pertinent theory is outlined below. 

Theoq 

Dihasic acids 
For a neutral dibasic acid, H2R, if only the 

undissociated species is able to partition into the 
organic phase, the distribution constant (partition 
constant) and the distribution ratio (Irving et al.. 
1978) are respectively given by (charges omitted 
for the sake of simplicity): 

(1) 

Nld 

[H IRI,, 
““= [RI + [HR] + [H,R] 

(2) 

because the acid concentration in the aqueous 
phase represents both ionized and non-ionized 

forms, K,,, and KLr2 being the apparent acidity 
constants (Asuero. I9XXa, 198%). 

Eqn. 2 can be rearranged to give 

[H] (> - I) = K,,, + K,, KCjZ. & (.<I 
( 

so that the values of K,, may bc obtained from 
the constant D,. at sufficiently low pH values. 
When the left-hand term of Eqn 3 is plotted vs 
the reciprocal of the hydrogen ion activity. ;I 
straight line ( y = u,) + a,.~-; single linear rcgres- 

sion) should be obtained. Therefore, it is possible 

to determine KS,, from the intercept and K,,, 
from the ratio of the slope to the intercept if it is 
assumed that no side reactions occur in the ayuc- 

ous and organic phase (e.g., self-association). 
The standard deviation of pK, values will bc 

given (Asuero et al., 1988) by 

(i=2) (5) 

where .s,,,, and s;,, are the standard deviations of 
the intercept and slope, respectively, of the re- 
gression line, and cov(a,,, a,) is the covariancc 
between the intercept and slope. 

However, the above-described method has the 
drawback that it precludes the checking of the 
assumed equilibria. For this reason, a more so- 
phisticated approach will be described in the 
following. 
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From Eqn 3 we have 

Ku 
--l= 

K;,, 

.i -- 

K‘,, 

DC. [H].\[Hl lLH1 + \[Hl 
(6) 

By multiplying and dividing the right hand of Eqn ~- 
6 by , ( Kc,?) we obtain 

(7) 

and taking into account the definition of a hyper- 

bolic cosine, cash x = (e’ + e+ J/2, we obtain 

Ko 
--1=2. 

K;,, . i”K,, 
DC [HI ,“m 

In 10 
. cash 

i - 
3. (PK,,, - PHI (8) 

Taking decadic logarithms on both sides of Eqn 
8, a further rearrangement leads to 

log 
i i 
2 - 1 

C 

PK,,, = - PK,,, - 7 

In 10 
2. (PK,,, - PH) 

3 
+~‘PH 

1 

PKL? 
(9) pK,,, + 2 = 5” 

I 

Eqn 9, however, is not suitable for direct calcu- 
lation. The computation method suggested here 
is based on the iterative refining of pK,, and 
p Kc,, as follows. A representation of the left-hand 
term of Eqn 9 against the term into brackets 
should give a straight line - if the value of pK,,, 
is known - whose slope is unity and has an 
intercept with the y-axis equal to -(pK,, + 
pK,&2). Different values of pK,, are assumed 

and Eqn 9 is applied. The best value of p K,,z may 
be taken as that which minimizes the standard 

deviation of y, sVi_,, estimated by the weighted 

regression line (Asuero and Gonzalez, 19XY) 

s/., = 
CM’,.()‘,-u,)-n,..u,)~ 

N-2 
( l(J) 

where w, is the normalized weight of the i-th data 

point. Without proper weighting this calculation 
procedure does not yield the best values for the 
acidity constants unless very reliable data have 
been used. 

In the absence of replication, the transforma- 
tion-dependent weights will be given (Asuero and 

Gonzalez, 1989) by 

1 
n,* = 

(K, -DcJJ 
I = log%. K~ (11) 

L) 

The weights calculated in Eqn 11 may be normal- 
ized (Sharaf et al., 1986; Asuero and Gonzalez, 
1989) such that the average weight is 1 

w, = N . 
w* 

I 
-= 

CW,* 

KD 1 
i 1 1 

DC 
( 12) 

The straight line intersects the x--axis at the 

point pK,,, + pK,,,/2, and then 

( 13) 

from which we may evaluate the value of pK,,, 

once the value of pK,,, is known. 
The acidity constants which satisfy the experi- 

mental distribution ratio vs pH curve best may be 
obtained by applying any of the two procedures 
described above. Nevertheless, when applying the 
first method one is not able to determine whether 
a given D, vs pH curve is characterized only by 
the assumed equilibria. The alternative biloga- 



rithmic procedure suggested here has the advan- 
tage of checking if the slope of the straight line 

obtained differs significantly from unity by apply- 
ing the f-test (Kennedy and Neville. 1976). It 

t,,,, = II ,/s‘,, is lower than t,,,,, for I’ = N ~ 2 dc- 
grees of freedom at the stipulated level of signifi- 
cance (e.g.. I’ = O.OS), the experimental slope dots 
not differ significantly from the theoretical slope 
of unity. If tchp > t,,,,, the null hypothesis is rc- 
,jected. In applying the t-test WC assume, however. 

that the weighted residuals 

(where f, is the estimated value of J’ for a given 

value of .t-J). follow ;I normal distribution (Draper 
and Smith, 19X1) if a relatively large number of 
data points is at our disposal. An additional ad- 
vantage of the hilogarithmic method reported 

here is that it provides ;I closed scale rcprcscnt;t- 

tion of y and I, unlike other plots. 

An estimate of the uncertainty of these calcu- 
lations would aid in interpreting cxperimcntal 

results. By applying the random error propaga- 
tion law (Asucro ct al., IW8) to Eqn 1.3. and 
taking into account the expressions for .Y,,,,. .\,,, 
and cov( LI,,, L(, ) for wcightcd regression (Asuero 

and Gonzrilez. 1989) WC obtain 

The paper of Asucro and Gonz6lez (IWC)) 
should be consulted for details. which arc too 

lengthy to include here. From the expression, 
Eqn 15. WC may obtain the standard deviation of 

Pk’,,, by assuming. c.g., that pK,,, is free from 
error. 

For a neutral diacid base, K. we obtain 

iR1,, 

and from the pi-I dcpcndcnce of‘ the expcr-imcn- 

tally determined distribution ratio we have 

(17) 

Rearranging Eqn I7 we obtain 

Thus. ;I representation of the left-hand term ot 
Eyn IX against the hydrogen ion activity giva ;I 
straight line whose reciprocal alopc is equal to 

K‘,, and the ratio of the intercept to slope i\ 

equal to K,,,. The value of K,, is calculated I’rom 
the constant II, in the alkaline range of PH. 
.sph, , is now given by Eqn 5 (i = I 1, and \,,h t>h 
Eqr; 4 (i = 2). 

Exactly analogous expressions to Eqns X and 0 

arc obtained when dealing with d&id bases. In 

effect. t’i-om Eqn IX. after ;I rather lengthy but 

straightforward algebra. WC obtain 

K,, -- I=7 
I), 

an d 

log 5 
i I), 

_ 

y(pH -- pK,,, )) 
_, 

;pH 
I 

(20) 

as forms suitable for regression analysis. A repre- 

sentation of the left-hand term of Eyn 70 against 

the term in brackets of the right-hand side should 
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give a straight line whose slope is unity and with 
an intercept with the y-axis equal to pK,,, plus 

pK,,,/2. 
The straight line intersects the x-axis in this 

case at the point -(pK,,, + pK;,,/2), and then 
we obtain 

PK,, 011 
pK,,, + ~ = - - 

2 ai 
(21) 

which allows one to evaluate the value of pK,? 
once the value of pK,,, is known. The standard 
error of pK,,, is evaluated in a similar manner as 
indicated previously for dibasic acids. 

The necessary calculations may be easily ac- 
complished with the aid of a microcomputer. The 
application of the theory developed above to two 
real systems will be shown in the following. 

Applications 

The methods described for dibasic acids have 
been applied to the distribution data given by 
Kubota and Ezumi (1980) for the 6059s system 
[6( R),7( RI-7-[2( K)-carboxy-2-(4-hydroxyphenylj- 
acetamidol-7-methoxy-3-([(I-methyl-lH-tetrazol- 
5-yl)thio]methyl}-X-oxo-S-oxa-l-azabicyclo[4.2.~]- 
act-2-ene-2-carboxylic acid disodium salt, a P-lac- 
tam antibiotic having strong antibacterial activity, 

20 2’5 30 PH 

Fig. 1. Distribution ratio data for the 6OSYS system as a 

function of pH (the curve in the figure is calculated with the 

acidity constants given in the text). 

which behaves as a diprotic acid with overlapping 
acidity constants. 

The distribution vs pH data of the 6059s sys- 
tem are shown in Fig. 1. The curve is calculated 

with the acidity constants given in the text 
(weighted hyperbolic cosine method). The appli- 
cation of Eqn 3 requires a knowledge of the 
distribution constant K,. For this reason the 
value of K, was successively varied and the 

procedure applied until the standard deviation of 
the regression reached a minimum. A poor corre- 
lation coefficient was obtained when the usual 
least-squares procedure based on Eqn 3 (Fig. 2) 

was applied, but this was improved by discarding 
points with large reduced residuals, 

log K,, s 

log KD 
PK.,, .s(pK<,,) PK,, s(PK,,~) Calculation method 

~ WiY4 

~ 055x 

-053X 

~ 0.534 

- 0549 

0.122 

_ 

_ 

0.010 

2.490 0.179 3.2.39 

2.433 0.020 3.272 

2.439 0.010 3.09 

2.377 0.018 3.377 

2.409 0.032 3.337 

0.0’)’ 

0.038 

_ 

0.084 

parabolic regression (Ku- 

bota and Ezumi. 1YXO) 

classical least squares 

based on Eqn 3 

unweighted hilogarithmic 

method 

weighted hilogarithmic 

method 

weighted parabolic 

regression (Asuero, 

unpublished data) 



Varying values of K,, wcrc also assumed 
(O.t)t~~~ as increment in k’,) when both the un- 
weighted and weighted hilogarithmic hyperbolic 
cosine method was applied. It is worth noting 
that the weighted procedure leads to a value of 
the slope cfoser to the theoretical value of unity 
expected as weff as to a PK,,~ tower and a pk’;,, 
higher. respectively, than both the unweightcd 
bilogarithmic hyperbolic cosine and the usual 
least-squares procedures. A summary of the 

methods applied is collected in Table 1. The 
bilogarithmic plot for the 6059S system (weighted 
case) is shown in Fig. 3, leading to pK,, values 

which are close to those obtained by applying the 
weighted parabolic regression procedure. 

The methods described for diacid bases have 
been applied to the distribution data given by 
Kuhota and Ezumi (10X0) for the o-toluidinc 
system as a junction of pH, which is depicted in 

B - 

1_1 

y” 0” 

z’ 

Fig. 3. Bilogarithmic plot for the hOSYS system 

Fig. -1. where the curve is calculated with the 
acidity constants and distribLitio[i constant given 
in the text (weighted hyperbolic cosine method 
procedure). Experimental data in the high plf 
region arc some distance from the behaviour of ;I 

hypothetical diacid base model as can be seen in 
the picture. As a matter of fact, the jpH.D, ) 
point {S.~O~,~40.~} must be discarded in the cal- 
culations, in order to obtain a sufficiently high 
correlation cocfficicnt when the classical Icast 
squares procedure based on the USC of Eqn. IX is 
applied. In any case, Fig. 5 reveals a certain 
dispersion of the corresponding transformed ( x,J’) 
data pairs. 

Y, 10 L l ,/ , 
I1 . ,’ 

l ,* 
./’ 



log cash y (pH-pK,,l 
I 
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Fig. 6. Bilogarithmic plot for the o-toluidine system. 

Better correlation coefficients are, undoubt- 
edly, obtained when applying the unweighted and 
weighted bilogarithmic hyperbolic cosine method 
assuming a given value of I(, in each case, and 
varying the pK,, value in order that the standard 
deviation of the regression line reaches a mini- 
mum. However, an optimum in the s,.,, value is 
not obtained with the application of the weighted 

bilogarithmic hyperbolic cosine method because 
the lower value admissible for K, was 204, only 
one D, unit higher than the distribution ratio 
value obtained at pH 5.53. Again, the weighted 
procedure leads to a value of the slope of the 
regression line closer to the theoretical value of 
unity expected. 

Results obtained by the application of the vari- 

ous calculation procedures are compiled in Table 
2, which reveal that the pK,, values obtained by 
means of the weighted bilogarithmic hyperbolic 

cosine method are very similar to those obtained 
with the parabolic regression procedure with the 
(pH,D,.} point {5.809,240.8} being discarded. The 
weighted bilogarithmic plot for m-toluidine is 

shown in Fig. 6. 
The pH vs D,. data for the two systems object 

of study (Kubota and Ezumi tI9801) arc given in 

the following. 
6059s system Data pairs tpH,D,.): 

1.890,0.2154; 2.321,0.1486; 2.462,0.1233; 
2.527,0.1098: 2.638,0.9408 E - I; 2.821,0.6964E - 
1; 3.060,0.327OE - I; 3.053,0.3207E - I; 

3 17x 0.2797E - 1. , 
3:390:0.1266 E - I : 

3.267,0.1936E - 1; 
3.460,0.9908 E - 2; 

3.49~,0.~766~ - 2; 3.537,0.74f3E - 2. 
o-~~~~~~i~ze Data pairs (pH,D,.f: 3X60,14.13; 

3.893,15.93; X934,18.49; 3.960.19.59; 4.120,31.61; 
4.200,38.84; 4.310,52.47; 4.379.53,83; 4.550,74.41: 
4.730,100.5; 4.830,113.4; 4.911,125.9; 5.018.144.8; 

5.140,160.2; 5.290,lW.l: 5.530,203.0; 5.809,240.8. 

The author thanks the DGICYT (Direccicin 
General de Investigation Cientifica y Tecnica de 

TABLE 2 

s 

log KI, 

PK,,, .dPK,,7) PK‘,, s(pK,,,) Calculation method 

2.334 

2.316 

2.386 

2.413 

2.308 

2.396 

o.t)Z 1 

0.033 

_ 

O.OOh 

3x9s 

3.91”) 

3.679 

J.008 

3.% I 

3.465 

0.058 

0.060 

0.037 

_ 

0.1 10 

9.x’)o 

-1.658 

4.532 

4.828 

4.654 

4.875 

O.OhO 

O.Oh3 

0.010 

O.OOh 

O,fKN 

0.020 

prrraholic regression (Ktl- 

hota and Ezumi. IYXO) 

parabolic regression (point 

no. 17 discarded) 

classical Iea\t squares 

based on Eqn I8 

unweighted hilogarithmic 

method 

weighted bilogarithmic 

method 

weighted parabolic regres- 

sion (Asuero. ~~npublished data) 
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